1,231 research outputs found

    Phase plane displays detect incipient failure in servo system testing

    Get PDF
    Computer based data conditioning and display technique detects incipient failure in servo system testing, for use in prelaunch checkout of complex nonlinear servomechanisms. These phase plane displays enable identification of, on line, unusual or abnormal servo responses which can be displayed compactly in the time domain on a cathode ray tube

    Incorporation of Functionalized Polyhedral Oligomeric Silsesquioxane Nanomaterials as Reinforcing Agents for Impact Ice Mitigating Coatings

    Get PDF
    In-flight, aircraft are exposed to a wide range of environments. One commonly exposed environment are clouds containing super-cooled water droplets. These water drop- lets exist in a metastable state below the freezing point of water, in the range of 0 to -20C. As the vehicle impacts the droplets, latent heat is released and within milliseconds the droplets convert to ice. This process is referred to as impact icing or in-flight icing.1 Impact icing is a major concern for aircraft since it can lead to degraded aerodynamic performance and, if left un- treated, can lead to loss of the vehicle. Active approaches (i.e., pneumatic boots, heated air ducts) typically utilized in mitigating in-flight ice accretion significantly increases vehicle weight and cannot be applied to all aircraft.1-3 A passive approach based on coatings is desired, but durability issues are a concern, especially on the wing leading edge.3 Nanomaterials have been shown to afford significant improvement in coating and composite physical properties at low loading levels.4 In this study, Polyhedral Oligomeric Silsesquioxane (POSS) nanomaterials have been shown to increase coating durability. Also, with wide variety of functionalities present on the arm structure, POSS nanomaterials have been shown to readily alter coating surface chemistry to mitigate impact ice adhesion from -16 to -8C in a simulated in-flight icing environment

    Apparent movement phenomena on CRT displays - Threshold determinations of apparent movements of pulsed light sources

    Get PDF
    Apparent movement phenomena on cathode ray tube displays - threshold determinations of apparent movements of pulsed light source

    Public Utilities Commission

    Get PDF

    Public Utilities Commission

    Get PDF

    Effects of Hydrogen Bonding and Molecular Chain Flexibility of Substituted n-Alkyldimethylsilanes On Impact Ice Adhesion Shear Strength

    Get PDF
    The effects of hydrogen bonding and molecular flexibility upon ice adhesion shear strength were investigated using aluminum substrates coated with substituted n-alkyldimethylalkoxysilanes. The location of the chemical group substitution was on the opposing end of the linear n-alkyl chain with respect to silicon. Three hydrogen-bonding characteristics were evaluated: 1) non-hydrogen bonding, 2) donor/acceptor, and 3) acceptor. Varying the length of the n-alkyl chain provided an assessment of molecular chain flexibility. Coated and uncoated aluminum surfaces were characterized by receding water contact angle and surface roughness. Ice adhesion shear strength was determined in the Adverse Environment Rotor Test Stand facility from -16 to -8C that simulated aircraft in-flight icing conditions within the FAR Part 25/29 Appendix C icing envelope. Surface roughness of the coatings was similar allowing for comparison of the test results. An adhesion reduction factor, based on the ice adhesion shear strength data with respect to uncoated aluminum obtained at the same temperature, was calculated to compare the data. The results revealed complex interactions with impacting supercooled water droplets that were interdependent upon ice accretion temperature, surface energy characteristics of water and ice, hydrogen bonding characteristic of the substituent, and length of the n-alkyl chain. To aid in explaining the results, 1) changes in the surface energy component (i.e., non-polar and polar) values that water undergoes during its phase change from liquid to solid that arise from the freezing of impacting supercooled water droplets on the surface depended upon the temperature during accretion were taken into account and 2) the physical properties (i.e., water solubility and melting point) of small compounds analogous to the substituted n-alkyldimethylalkoxysilanes used in this study were compared

    Estimating HIV Medication Adherence and Persistence: Two Instruments for Clinical and Research Use

    Get PDF
    Antiretroviral therapy (ART) requires lifelong daily oral therapy. While patient characteristics associated with suboptimal ART adherence and persistence have been described in cohorts of HIV-infected persons, these factors are poor predictors of individual medication taking behaviors. We aimed to create and test instruments for the estimation of future ART adherence and persistence for clinical and research applications. Following formative work, a battery of 148 items broadly related to HIV infection and treatment was developed and administered to 181 HIV-infected patients. ART adherence and persistence were assessed using electronic monitoring for 3 months. Perceived confidence in medication taking and self-reported barriers to adherence were strongest in predicting non-adherence over time. Barriers to adherence (e.g., affordability, scheduling) were the strongest predictors of non-adherence, as well as 3- and 7-day non-persistence. A ten-item battery for prediction of these outcomes (www.med.unc.edu/ncaidstraining/adherence/for-providers) and a 30-item battery reflective of underlying psychological constructs can help identify and study individuals at risk for suboptimal ART adherence and persistence

    Reinforcing Additives for Ice Adhesion Reduction Coatings

    Get PDF
    Adhesion of contaminants has been identified as a ubiquitous issue for aeronautic exterior surfaces. In-flight icing is particularly hazardous for all aircraft and can be experienced throughout the year under the appropriate environmental conditions. On larger vehicles, the accretion of ice could result in loss of lift, engine failure, and potentially loss of vehicle and life were it not for active deicing or anti-icing equipment. Smaller vehicles though cannot support the mass and mechanical complexity of active ice mitigating systems and thus must rely upon passive approaches or avoid icing conditions altogether. One approach that may be applicable to all aircraft is the use of coatings. Durability remains an issue and has prevented realization of coatings for leading edge contamination mitigation. In this work, epoxy coatings were generated as a passive approach for ice adhesion mitigation and methods to improve durability were evaluated. Highly cross-linked epoxy systems can be extremely rigid, which could have deleterious consequences regarding application as a leading edge coating. Incorporation of flexible species, such as poly(ethylene glycol) may improve coating toughness.8 Additionally, core-shell rubber (CSR) particles have been utilized to improve fracture toughness of epoxies.9 Both of these more established additives are investigated in this work. An emerging additive that is also evaluated here is holey graphene. This nanomaterial possesses many of the advantageous properties of graphene (excellent mechanical properties, thermal and electrical conductivity, large surface area, etc.) while also exhibiting behaviors associated with flexible, porous materials (i.e., compressibility, increased permeation, etc.). Holey graphene, HG, was synthesized by the oxidation of defect-rich sites on graphene sheets through controlled thermal expo-sure.10 It is envisioned that the porous nature of HG would allow resin penetration through the graphitic plane, resulting in better interfacial interaction and therefore better translation of the nanomaterials properties to the surrounding matrix

    The Effect of Stainless Steel 304 Surface Roughness on Ice Adhesion Shear Strength of Accreted Impact Ice

    Get PDF
    Aircraft in-flight icing is problematic due to the ad-verse effect on vehicle performance. It occurs when supercooled water droplets (SCWD) present in clouds, under the appropriate environmental conditions, col-lide with the aircraft surface resulting in accretion of ice (i.e., impact icing). Impact ice can range from clear/glaze to rime or a combination of the two (i.e., mixed) with the type determined by the air temperature (0 to -20C), liquid water content (LWC, 0.3-0.6 g/cu.m), and droplet size [median volumetric diameter (MVD) of 15-40 m] present during accretion.1 These impact icing events generally occur at temperatures ranging from 0 to -20C. Below -20C, ice crystals dominate the environment and typically do not adhere to the aircraft surface. A main difference between an impact icing occurrence and a slow growth icing (i.e., freezer ice) one is the speed of the icing event. Besides environmental conditions, ice adhesion strength (IAS) to a metallic substrate depends upon surface roughness. It is known that increasing surface roughness and decreasing temperature lead to in-creases in IAS

    Optimization of Picosecond Laser Parameters for Surface Treatment of Composites Using a Design of Experiments (DOE) Approach

    Get PDF
    Based on guidelines from the Federal Aviation Administration, research supported by the NASA Advanced Composites Project is investigating methods to improve process control for surface preparation and pre-bond surface characterization on aerospace composite structures. The overall goal is to identify high fidelity, rapid, and reproducible surface treatments and surface characterization methods to reduce the uncertainty associated with the bonding process. The desired outcome is a more reliable bonded airframe structure, and to reduce time to achieve certification. In this work, a design of experiments (DoE) approach was conducted to determine optimum laser ablation conditions using a pulsed laser source with a nominal pulse width of 10 picoseconds. The laser power, frequency, scan speed, and number of passes (1 or 2) were varied within the laser system operating boundaries. Aerospace structural carbon fiber reinforced composites (Torayca 3900-2/T800H) were laser treated, then characterized for contamination, and finally bonded for mechanical testing. Pre-bond characterization included water contact angle (WCA) using a handheld device, ablation depth measurement using scanning electron microscopy (SEM), and silicone contamination measurement using laser induced breakdown spectroscopy (LIBS). In order to accommodate the large number of specimens in the DoE, a rapid-screening, double cantilever beam (DCB) test specimen configuration was devised based on modifications to ASTM D5528. Specimens were tested to assess the failure modes observed under the various laser surface treatment parameters. The models obtained from this DoE indicated that results were most sensitive to variation in the average laser power. Excellent bond performance was observed with nearly 100% cohesive failure for a wide range of laser parameters. Below about 200 mW, adhesive failure was observed because contamination was left on the surface. For laser powers greater than about 600 mW, large amounts of fiber were exposed, and the failure mode was predominately fiber tear
    • …
    corecore